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SUMMARY OF MAXIMUM THEORETICAL ACCURACY OF
RADAR MEASUREMENTS

INTRODUCTION

The parameters of a radar target determine how the transmitted waveform is modified

by the target to produce a reflected waveform. During a short time interval the target is com-

pletely characterized by several parameters: cross section, range, radial velocity, angular

position, and (if necessary) angular rate and radial acceleration. Once the target has been

detected, the signal energy received across the antenna aperture may be processed to form

an estimate of the target parameters. We assume that the received waveform has been cor-

rupted by additive white Gaussian noise. An optimum estimation method for measuring the

target parameters is the method of maximum likelihood. This method can be implemented in

the case of additive white Gaussian noise by selecting the peak output from a set of filters

where each filter is matched to a set of parameter values. There is one filter for each es-

sentially different combination of parameter values. The accuracy available from the maxi-

mum likelihood method depends not only on the relative strength of signal and noise at the

receiver, but also on the shape of the antenna aperture and the character of the transmitted

waveform. This report contains the accuracy formulas which have been derived. Free space

propagation is assumed throughout.

The transmitted waveform, denoted x(t), is related to its Fourier transform X(f) by

x(t) = f ý X(f)e 2
7'" df, X(f) =f x(t)e. 2 'rt dt (1)

We make the following definitions:

E - x 2 (t)dt f IX(f) 2 df

to •- J tx 2 (t)dt (2)

fo 2-E f IX(f)12 df

where E is called the signal energy (assumed finite), to is the mean time of arrival of the

signal, and fo is the mean frequency of the signal. Then we can define:

/3 2 rT 2fS(f_ f,)2 IX(f)12 df]

(3)

A 2,r f (t-t 0 )
2 X2 (t) dt



where /3 and A are called the effective bandwidth and the effective time duration of the

signal, respectively. No is defined as the noise power per cycle at the receiver, i.e., No is

the average noise power at the output of a filter with a one-cycle-wide passband. The quan-

tity it is defined by

2E_ 
(4)N,

Scharacterizes the detectability of a known signal in the presence of white Gaussian noise

and is exactly the peak signal-to-noise ratio available at the output of a matched filter (ref-

erence 1). For good signal detectability, NR must be fairly large (of the order of 50). The

accuracy formulas s u m m a r i z e d here depend on the assumption that N is large and that

ambiguities are not present.

RANGE ACCURACY

Assume that range is the only unknown target parameter. Provided that the envelope of

the autocorrelation function of the transmitted waveform can be approximated by a parabola

near the origin, the error in the estimation of the time of arrival of the reflected signal is

2 normally distributed with standard deviation St given by (references 2 and 3)

(5

The corresponding ins error 8, in the estimation of range is

C C

8r -- 2-, = j,3 (6)

where c is the velocity of light.

When the transmitted signal has a rectangular envelope, )9 is infinite and the above

formula is not valid. It appears that an exact range accuracy formula for this situation is not

simple to obtain. Using an approximate analysis, however, the following formula has been

derived for a rectangular pulse of sinusoid with duration T (reference 4),

5, or , 5-,- (7)

Rough numerical confirmation of this formula has been obtained. Since ýR is proportional to

the product of the peak signal power and T, we have the intuitively obvious result that 8, for

a rectangular pulse depends only on the peak power of the pulse and riot on the pulse length.



VELOCITY ACCURACY

Assume that radial velocity is the only unknown parameter of the target. Provided that

the envelope of the autocorrelation function of the transmnitted waveform, considered as a

function of doppler shift, can be approximated by a parabola near the origin (a condition

which is usually satisfied), the error in estimation of frequency is normally distributed with

standard deviation St given by (reference 4)

1r 1 (8)

The corresponding rms error 5v in the estimation of radial velocity is
B A

av = 2A !X (9)

where the wavelength A = c/fr.

For the particular case of a rectangular pulse of duration T, A = irT/\/3 and

v = 2= TA (10)

COMBINED RANGE AND VELOCITY ACCURACY

Assume that both range and radial velocity are unknown target parameters. Provided

that the autocorrelation function of the transmitted waveform, considered as both a function

of time delay and doppler shift, is well behaved in the manner indicated earlier (this rules

out rectangular pulses), we can derive the following expressions for at and Bf (reference 4),

__ •__ •RA2 ___
2(•32) (RA2) - (4AI 2 /N 0 )2

ar2= (11)

- , 6) (¶\2) - (4A. 2/N0))

where Al 2 is a quantity which is indicative of the correlation between the errors in measure-

ment of time of arrival and the errors in measurement of frequency. The larger A, 2 is, the

larger are the errors at and &f. Al 2 is large when the radar waveform is linearly frequency

modulated (in one direction only). Al 2 = 0 for any waveform which has a center of symmetry.

In the situation of most frequent interest where A, 2 0 0, the above expressions for at

and 8f reduce to those which were stated earlier (Eqs. 5 and 8). We see, therefore, that the

rms error in the estimation of one of the parameters is not influenced by the lack of knowl-

edge about the other parameter. Generally, the presence of additional unknown parameters

can do nothing but increase the error in estimation of any particular parameter. When the



parameter in question is not "coupled" to any of these unknown parameters, however, there

is no increase in this error.

The lack of coupling between the measurement of target parameters can be extremely

useful because it allows us to calculate the rms error in the estimation of each of the param-

eters separately while ignoring the others. Of the following set of target parameters

1. cross section

2, range

3. radial velocity

4. radial acceleration

5. angle of arrival

6. angular rate

it has been necessary in the derivation of the formulas presented in this paper to include

only couplings between the pairs (2, 3) and (2, 4).

ANGULAR ACCURACY

We assume that the reflected waveform from a target arrives across an antenna aperture

and that the unknown angle of arrival is approximately normal to the plane of the antenna

4 aperture. The aperture need not necessarily be simply connected, e.g., it may consist of two

or more disjoint coplanar areas. It is assumed further that the aperture is large compared to

a wavelength but that the maximum difference of time delay from the target and any two points

in the aperture is small compared to 0-' (the reciprocal bandwidth) of the reflected signal.

This latter assumption will be satisfied by signals which are sufficiently narrowband and it

insures that angular information is not being derived from coarse range information. The

assumption also insures that the estimate of angle of arrival will be uncoupled from the esti-

mates of other target parameters.

From the phase and amplitude information available from the aperture in the presence

of receiver noise (and perhaps uniformly distributed background noise), we can form a maxi-

mum likelihood estimate of the angle of arrival. The angle of arrival can be represented by

two numbers, the components of the angle of arrival measured in each of two reference planes

perpendicular to each other and to the plane of the antenna aperture. For apertures of arbi-

trary shape, the errors in the two measurements will generally be coupled together, but this

coupling can be eliminated by choosing the reference planes along the principal axes of the

aperture. With this step, the estimate of each component of the angle of arrival is reduced

to a one-parameter estimation problem. We assume in what follows that this reduction has

been made.



Let ý and 77 be the Cartesian coordinates of a point in the aperture. These coordinates

are chosen to lie along the principal axes ot the aperture with its centroid as origin. Denote

the aperture area by S. Then the rms length of the aperture in the ý direction, P:, is defined

S~~n-f2ded?? (12)

277 is defined similarly. Note the similarity of these definitions to the definitions of j and

A (Eq. 3). The general expression for the rms error So in estimating the angle of arrival

le measured in the plane parallel to C, is given by*

0 A (in radians) (13)

An equivalent result holds for the Y7 plane. We shall find it convenient to drop the subscripts

Sand n and write simply

0 /-(14)

where it is assumed that V? will be measured in a direction parallel to the plane in which
0 is defined.

5
It is useful to adapt Eq. 14 to spccial cases. For a rectangular aperture of length L,

S = rrL/VP- and

80 (15)

For a circular aperture of diameter D, < =rD/2 and

a 0= 77'ý(6)(16)

For an interferometer system in which the aperture consists of two equal coplanar areas

separated by a distance NA, which is large compared to the linear dimensions of each aper-

ture, we have = r7NA and

8--=-_ 1 (17)

The measurement of 0 for the last situation, though it may be very accurate, will usually

be highly ambiguous.

* The proof of this formsula is indicated In reference S. . See also Eq. 30 of reference 6.



FURTHER ESTIMATES OF TARGET PARAMETERS FROM SETS OF RADAR
MEASUREMENTS

Consider the following general problem. We are given a function of time Z(t) which
depends on two unknown parameters yj and Y2.

,(t)- Y + y2t (18)

Suppose that we have a series of n (n >> ) equally spaced measurements of -(t), each of

which is perturbed by an independent, normally distributed noise with variance 02. The time

origin t = 0 is taken at the center of the measurement interval. (This assumption is made

throughout this section.) Then, parameter estimation theory shows that the estimates of yj

and yg are uncoupled and have normally distributed errors with standard deviations by, and

By, given by

S•, • nT(19)

where T in these formulas denotes the time duration of the measuring interval (reference 7).

The more general problem

6 Y(t)--1 + y 2t + y~t2  (20)

is also of interest. For this problem, the theory tells us that the estimate of Y2 is uncoupled

to the estimate of y'j or Y3, but that the estimates of yj and y3 are coupled together, and

3o7By I 2/n-

b2 VnT (21)

Y 3 ýJiT 2

where as before T denotes the time duration of the measuring interval (reference 7).

We are now ready to apply these results to the problem of combining sets of inde-

pendent, equally spaced radar measurements.

Suppose the range of a target over a short interval of time can be written

r(t) ý re + vt + /2at 2 (22)



where the parameters ro, v, and a are unknown. Suppose also we have a series of n inde.

pendent, equally spaced measurements of range over a time T, each with rms error 8, given

by Eq. 6. Combining Eqs. 6 and 21, we have

3 c

3, 3rTc (23)

8, 6V/9c
6OPT 2

In these last two expressions for 8, and b., it is instructive to use (in place of /3) the ef-

fective bandwidth of the signal taken about zero frequency as reference, i.e., calculate / in

Eq. 3 with f0 = 0. We shall call this bandwidth f30. For narrowband signals, /3o - 2?'f 0 . The

range accuracy corresponding to the bandwidth (30 corresponds to the "fine structure" Infor-

mation in the signal obtained from a measurement of carrier phase (reference 2). The range

nceiuracy from this fine structure information is usually quite accurate, but is also highly

ambiguous. These ambiguities do not imply that fine range information Is always useless

however, because it may be possible to combine sets of ambiguous range measurements to

obtain non-ambiguous estimates of v and a by virtue of n ywinri information about v end a. 7

Replacing /3 by 2rrfo in Eq. 23 gives

V~A

(24)

A determination of whethe." ambiguities exist in the above method of estimating v and a will

require special consideration for the application at hand.

Using a procedure similar to the one outlined in this section, one can derive expres-

sions for the accuracy in estimating velocity and acceleration from a series of independent

equally spaced measurements of velocity, each with rms error 6,. The results from Eq. 19 are

, , ( T o t a l ) = .n

=2 ____(25)

a VT



Consider now the important problem of estimating angle of arrival and the rate of

change of the angle of arrival, Over the measurement interval of interest, we assume that the

angle of arrival 0 may be approximated by

0= O + 1.)t (26)

where 0 0 and w are unknown parameters to be determined. Proceeding as before and using

Eq. 14 in Eqs. 19, we have

A

a 2\-A (27)

Scan of course be speciatized to various cases of interest. For the case of the interferom-

eter considered earlier, we recall that V = nNA and

- 2/3 (28)c -rtN T%/nT

Note that the quantity nR corresponds to the total received energy at both apertures. Though

the measurement of OJ0 with the interferometer is usually highly ambiguous, our a priori knowl-

8 edge about the maximum value which (,) can have may, in certain situations of interest,

eliminate the ambiguities in the estimation of u).



REFERENCES

1. W. W. Peterson, T. G. Birdmull, and W, C, Fox, "The Theory of Signol Dftaciwbililtv,'

IRE Trans. on Information Theory, Vol, 4, pp. 171-212, S.ptember, 19S4.

2. P. M, Woodward, "Probability and Information Theory with Appllvaliona to hado,,,"

(McGraw-Hill, 1953)

3, A. 1. Mallinkrodt and T, E, Sollonberger, "Optimum Pnla e Time )it rolnlisliom," I1F
Trans. on Information Theory, PGIT.3, March, 1954,

4. R. Man,.sse, "Range and Veit 'ity Accuracy from Radar Mo4lioromntan," M.IT Ilr•ntn
Lab GR 312-26, February 3, 1955, See al - "Summary (of Theorotlr'tl Apurnwulvo f•ow,

Radar Meaurements," MAIJT. Lincoln Lab Div. III Q.P,•R,, April, IQ-.6.

5, R. Mar.asse, "An Analysh4 of Angular Accuracicl from INfdw Memurorrwnto," M IT

Lincoln Lab GR 32-24, December 6, 1955.

6. R, Manasse, "Maximum Angular Accuracy of Tracking a Radio Star by Lobe CmIlrIliaon,"

M.I.T. Lincoln Lab GR 312-9, February, 1957, This paper will appear Phofrly Il th1

PGAP subgroup of the IRE.
9

7. R. Manasse, "Parameter Estimation Theoryand Some Applicationn of the Theory to Radar

Measurements." This paper will be forthcoming as a MITRK technical report.


